આપેલ વિધાનનું નિષેધ કરો : -
"દરેક $M\,>\,0$ માટે $x \in S$ અસ્તિત્વ ધરાવે કે જેથી $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$
$M\,>\,0$ અસ્તિત્વ ધરાવે કે જેથી દરેક $x \in S$ માટે $x \geq M$
$M\,>\,0$ અસ્તિત્વ ધરાવે , કોઈક $x \in S$ અસ્તિત્વ ધરાવે કે જેથી $x \geq M$
$M\,>\,0$ અસ્તિત્વ ધરાવે કે જેથી દરેક $x \in S$ માટે $x < M$
$M\,>\,0$ અસ્તિત્વ ધરાવે , કોઈક $x \in S$ અસ્તિત્વ ધરાવે કે જેથી $x < M$
બુલિયન સમીકરણ $\left( {\left( {p \wedge q} \right) \vee \left( {p \vee \sim q} \right)} \right) \wedge \left( { \sim p \wedge \sim q} \right)$ =
જો $p : 5$ એ $2$ કરતાં વધારે નથી અને $q$ : જયપુર એ રાજસ્થાનનું પાટનગર છે આ બંને વિધાનો છે તો વિધાન $p \Rightarrow q$ નું નિષેધ વિધાન મેળવો.
બૂલીય અભિવ્યકિત $((\sim q) \wedge p) \Rightarrow((\sim p) \vee q)$ નો નિષેધ એ ........ ને તાકિર્ક રીત સમકક્ષ છે.
આપેલ વિધાનનું નિષેધ કરો:” જો હુ શિક્ષક બનીશ ,તો હુ સ્કુલ બનાવીશ.” .
આપેલ પૈકી ક્યૂ વિધાન સંપૂર્ણ સત્ય નથી ?